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We present a new vorticity—velocity formulation and implementation for the un-
steady three-dimensional Navier—Stokes equations, based on a penalty method. It
relies on an equivalence theorem that employs exact boundary conditions and the
vorticity definition on the domain boundary. This approach is particularly attractive
for high-order methods for which the often-used influence matrix method fails to
converge forAt — 0. The accuracy and the robustness of the new method is demon-
strated in the context of several spectral element simulations of unsteady two- and
three-dimensional internal and external flows. In particular, the flow past a finite
span cylinder attached to end-plates is studied in some detail in order to evaluate the
effects of the aspect ratio on the formation length.1999 Academic Press

1. INTRODUCTION

The vorticity—velocity formulation of the Navier—Stokes equations has emerged as
attractive alternative to the velocity—pressure formulation in simulating incompressil
flows [8, 16, 32, 40]. Several general advantages of this formulation are often cited in
literature: (1) it deals with the physically relevant variables of vortex dominated flow
(2) it works in both two- and three-dimensions; (3) it eliminates the pressure term, wh
leads to a simple diffusion operator rather than the Stokes operator; (4) boundary condit
can be easier to implement in external flows where the vorticity at infinity is easier
set than the pressure boundary condition; and (5) no additional computational worl
required to evaluate noninertial terms since all noninertial effects arising from rotati
and translation of the reference frame enter into solution through the initial and bound
conditions [45]. Specifically, in the finite element context, the vorticity—velocity formulatio
produces aorticity fieldthat is () continuous across elemental interfaces. This is unlik
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the velocity—pressure formulation, where continuity of vorticity across elemental interfac
is achieved only upon convergence.

In this paper, a new vorticity—velocity numerical formulation, based on a penalty methe
is presented. It is implemented in the context of semi-implicit temporal discretization a
spectral element spatial discretization. The penalty method is the key to imposing rol
and stable high-order accurate vorticity boundary conditions. Several numerical tests
demonstrate that high-order accuracy is achieved with the penalty method. The expone
convergence, the minimization of the dispersion and dissipation errors, and the geom
flexibility of the spectral element method make it particularly well suited for simulatin
turbulent flows. However, this method (and, in general, any high-order method) is m
sensitive to boundary condition implementation. In particular, the influence matrix mett
[52] described in Section 3 has been used to impose the vorticity boundary conditions, b
was discovered that it has fundamental numerical limitations for high-order discretizatic
as it does not converge as — 0.

The formulation presented here expands both the vorticity and velocity fields in t
same discrete space (polynomial ordey,— Py formulation). However, a fundamental
theoretical question of which discrete space should be used to expand the vorticity
velocity terms remains. Low-order finite element vorticity—velocity formulations expar
the vorticity in a subspace of lower order than the velocity [16, 15, 19, 39, 40] and fin
difference vorticity—velocity formulations use a staggered grid [8, 9, 29, 30, 17, 46, !
32,56, 11, 13]. Numerical evidence from our work suggests that, for the proposed splitt
formulation, there is no obvious incompatibility in the spaces of velocity and vorticity. Thi
in turn, allows for an easy implementation of the proposed formulation.

This paper is organized as follows: In Section 2, we present the equivalence theoren
the vorticity—velocity formulation. In Section 3 we analyze the influence matrix metho
In Section 4, the accuracy of the penalty method is demonstrated with several analy
problems, and the scaling of the error with the penalty term is determined by numeri
experiments. In Section 5, a discussion of treatment of corner singularities and the ef
of rounding the corners are presented. In Section 6, the simulation of flow past a t
dimensional cylinder at Reynolds number Rel000 is compared with a velocity—pressure
flow solver, and a three-dimensional simulation of a cylinder with end-plates shows
effect of side boundaries on the formation length. We conclude in Section 7 with a b
summary of the results. Finally, in Section 8 we include some details of the implementati
as well as representative parallel timings.

2. EQUIVALENCE THEOREM

We first state the canonical velocity—pressure form of the unsteady incompressible th
dimensional Navier—Stokes equations and the two proposed forms of the vorticity—velo
systems—rotational and Laplacian. The canonical velocity—pressure form of the incc
pressible Navier—Stokes equations is

au+(u V)u Vp+ 192 ing (1a)
ot P Re

V-u=0 in Q (1b)

au
u=ur onlp; a—nzo onTy, (1c)
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where the velocity boundary conditions must satisfy the constfaint ndI" = 0, and the
initial conditions for the velocity must be supplieg(x,t = 0). Herel'p is the Dirichlet
boundary and™y is the Neumann boundary.
The proposetbtational form of the vorticity—velocity formulation of the incompressible
Navier—Stokes equations is
ow

1 .
ﬁ—ka(a)xu):—R—erwa in Q (2a)

Viu=-Vxow inQ (2b)

with boundary constraints and initial conditions

w=Vxu onl (2¢c)
j{k(i—:+wxu+éwa>-ds:—f;d(m%u-u), k=1 ...,p, (2d)
u=ur onlp; 2—z=0 onl'y (2e)

/u-ndF:O or V.-u=0 atone pointol (2f)

F w=Vxu att=0 inQ, (29

where the domain ip-multiply connected and,’s are thep independent contours and the
initial conditions for the velocity must be suppliagx, t = 0). The equivalence between
the rotational form of the vorticity—velocity equations, Egs. (2), and the canonical velocit
pressure form, Egs. (1), will be demonstrated by Theorems la, I, Ill, and IV.
The proposetiaplacian form of the vorticity—velocity formulation of the incompressible
Navier—Stokes equations is
Jw

1 .
E+Vx(wxu)=R7eV2w inQ (3a)

V2u=-Vxow inQ (3b)

with boundary constraints and initial conditions

w=Vxu onl (3¢)
V.-o=0 onl’ (3d)
ou 1 1
— —V -ds=-¢9 d —u- k=1,... 3e
7{‘((8,[ +a)xu+Re Xa)) j{k <p+2U u>’ s P (3€)
au
u=ur onl'p; — =0 only (3f)
an
/u-udF:O onV.u=0 atone pointol (39
r
w=Vxu att=0 inQ, (3h)

where the domain ig-multiply connected and;s are p independent contours and the
initial conditions for the velocity must be suppliagx, t = 0). The equivalence between
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the Laplacian form of the vorticity—velocity equations, Egs. (3) and the canonical velocit
pressure form, Eqgs. (1), will be demonstrated by Theorems Ib, 11, lll, and IV.

The equivalence theorem states that the vorticity and the velocity obtained from syst
(2) and (3) are identical to the vorticity and velocity from system (1). The only difference
the proof of equivalence between the rotational and Laplacian form of the vorticity—veloc
equations is in the way the divergence-free vorticity condition is enforced. In Theorem
the rotational form of the equations, Egs. (2), implicitly sets the derivatives of the divergel
to zero by using theurl form of the diffusion term. In Theorem Ib, the Laplacian form of
the equations, Egs. (3), explicitly sets the divergence of vorticity to zero on the bounda

THEOREMIa. A necessary and sufficient condition for the vorticity—velocity equatior
(2) to satisfy the condition that the vorticity is divergence-free at all times in the dafiin
that the definition of vorticity must be satisfied in the domain initiéflizen and Lof41]).

Remark on Theorem la.The rotational form of the vorticity transport equation, Eq. (2a)
is a convenient form to prove that vorticity is divergence-free. However, the rotational fol
couples all three components of the vorticity. This means that all three components of
vorticity must be computed simultaneously.

THEOREMIb. A necessary and sufficient condition for the vorticity—velocity equatior
(3) to satisfy the condition that the vorticity is divergence-free in the domain is that tl
definition of vorticity must be satisfied in the domain initially and on the boundary at ¢
times(Quartapelle[37]).

Remark on Theorem Ib.The equation governing the evolution of the divergence o
vorticity is parabolic with homogeneous Dirichlet boundary conditions. The homogenec
Dirichlet boundary conditions can be replaced by homogeneous Neumann boundary cc
tions, which are jusV(V - w) = 0 on the boundary. This term,V(V - ), is implicitly set
to zero in Eq. (2a) of the rotational form in the entire dom@irSetting either the Dirichlet
or Neumann divergence-free vorticity boundary conditions explicitly on the boundary
perhaps preferred over solving the rotational form because later the penalty method wil
shown to be well suited to imposing complicated constraints on the boundary. Also, by us
the Laplacian form of the vorticity—velocity equations, one is able to use standard sol
and avoid the nonsymmetric coupled solvers needed for the vorticity in the rotational fo

It will be proven here that the definition of vorticity is governed by a Laplace equatic
with the definition of vorticity enforced on the bounddtyn the proposed vorticity—velocity
formulations, implying the definition of vorticity is satisfied in the dom&nThe proof is
based on a vector identity and on Eq. (2b) or (3b).

THEOREMII. Necessary and sufficient conditions for the definition of the vorticity t
be satisfied everywhere in the domain are that the definition of vorticity is satisfied on
boundary and the vorticity is divergence-fréeheorem la or Theorem Jb

Proof. Consider the vector identity in terms of the velocity,
VAU =V(V-u)—V x (VxU) 4)
and Eq. (2b) or (3b)

Viu=-V x o. (5)
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Equating the right sides of these two equations and manipulating gives
Vx(w—Vxu=-V(V-u). (6)
Taking thecurl of this equation gives
VXxVx(w—VxU)=-VxV(V-u), 7)
where the right-hand side is zero. Applying the vector identity to the left-hand side give
VIV (w—Vxu]—V3w-Vxu)=0. (8)

The first term drops out because the vorticity is divergence-free in the domain frc
Theorem la or Ib, and the second term is zero because derivatives are interchange
Thus,

VZ(w—V x u) =0. 9)

Hence, by the minmax principle for the Laplace equation and the fact that the definitior
vorticity is satisfied on the boundary, the definition of vorticity is satisfied everywhere
the domain.m

THEOREMIII. A necessary and sufficient condition for the velocity to be divergence-fr
in the domain is for the definition of vorticity to be satisfied in the domain and for eith
global mass balance to be satisfied or the velocity to be divergence-free at one point or
boundary(Daube[8]).

We also require that the total pressure (i.e., static plus dynamic pressure) is single-val
Stella and Guj [46] derived a constraint from a pressure single-valuedness argumer
multiply-connected domains and showed, by example, that the constraint is necessar
considering the Taylor—Couette problem. A more general constraint for multiply-connec
domains was derived by Daube [9].

THEOREMIV. A necessary and sufficient condition for the total presspre %u -u, to
be single-valued ifthe domain is p-multiply connected i#’gkc(f)u/at +wxu+(1/ReV x
w)-ds=0fork=1, ..., p, on p independent contours.

The constraint can be reduced to
f(wa)-ds:O, (10)
Ck

if the contour is on a solid surface where tieeslipcondition is required. For a 2D flow past
a cylinder, the constraint applied to the cylinder surface with the no-slip condition furtt
reduces to

j{?)—‘r‘]’ds=o, (11)
Cc

wheren is the normal to the surface of the cylinder arid the contour around the surface of
the cylinder. For a 3D flow past a cylinder the side boundary conditions need to be taken
account. In practice, itis convenient to impose the constraintin Eq. (10) on a no-slip surf



METHOD FOR VORTICITY-VELOCITY FORMULATION 37

instead of the more general form of the constraint in Theorem IV, because the expres
takes on a simpler form that just involves the vorticity.

One of the key steps in proving equivalence for both the rotational and Laplacian for
is enforcing the definition of vorticity on the boundary. This important result from th
equivalence theorem provides a linear coupling between the vorticity and velocity on
boundary and is necessary to guarantee that Egs. (2) and (3) give the correct vorticity
velocity fields.

3. UNRESOLVED ISSUES IN THE INFLUENCE MATRIX METHOD

The influence matrix technique has often been used to impose linear constraints or
boundary implicitly. Kleiser and Schuman [27, 28] were among the first to use the influer
matrix technique to impose pressure boundary conditions in their channel simulation
the velocity—pressure equations. Vaeelal. [54] used an influence matrix technique to
solve the Navier—Stokes equations based on a vorticity-streamfunction spectral me
formulation. Daube simulated axi-symmetric flow [8] in a cylindrical tank by solving th
vorticity—velocity equations using an influence matrix technique identical to the one p
sented here.

The influence matrix method relies on tieearity of the semi-discrete equations, with
the nonlinear terms treated explicitly. We can separate the 2D vorticity—velocity equati
into a time-dependent and time-independent problem,

Nr

o(X. 1) = 1) + Y Mdx(X) (12a)
k=1
Nr

ueGt) =00 1) + > Aklk(), (12b)
k=1

whereig’s will be determined by enforcing the definition of vorticity on the boundary an
Nr is the number of nodes on the boundary. The time-independent equations need on
solved once and are

Re
<At - Vz)d)k =0, ax(yj)) =8; Vyj el (13a)

V3 = -V x &, 0=0. (13b)

The time-dependent problem is

Re Re
(At - v2> oMl = Ew“ —ReU"- V)", =0 (14a)
VAT = v x o™, 0" = up. (14b)

The influence of the boundary vorticity on the interior flow is represented by the influer
matrix. The influence matrix equations are constructed by substituting the time depent
and independent solutions into the definition of vorticity on the boundary and then solvi
for A¢’s. More details about this method can be found in [51].



38 TRUJILLO AND KARNIADAKIS

3.1. Numerical Boundary Layers

The cost to store the time-independent solution for the influence matrix technique
typically very large. This cost can be offset by increasing the computational cost of the fl
solver, but the influence matrix will still have to be stored [50]. Furthermore, the rank
the influence matrix (i.e. degrees-of-freedom on the physical boundary) can be rather I
and the matrix is not symmetric. It is important to note that the influence matrix technig
is limited to solving problems with fixed grids and time steps, which excludes the cle
of problems with moving boundaries or adaptive remeshing and time stepping. Howe
all these difficulties are not nearly as discouraging as the intrgti@umerical boundary
layers in the formulation that become more severAggoes to zero.

The numerical stiffness caused by the influence matrix technique has previously g
unnoticed. It will be shown that this numerical stiffness increases as the Reynolds nun
is raised and as the numerical time step decreases. A possible explanation of why
numerical stiffness in the influence matrix technique has been overlooked is that the |
order schemes previously used to solve the vorticity—velocity equations have a tende
to smooth sharp boundary layers artificially. On the other hand, the high-order mett
presented here must resolve the steep boundary layers because high-order method:
minimal artificial dissipation. Researchers using the technique have limited their studie
low Reynolds numbers [6], where the numerical stiffness is not as severe. Another poss
reason for the omission is the influence matrix technique has been successfully use
impose pressure boundary conditions in the velocity—pressure formulation of the Navi
Stokes equations. In the velocity—pressure formulation, numerical stiffness does not o
unless a Fourier expansion is used in at least one direction, and even then, only if the v
number is large does the problem manifest itself.

To demonstrate the numerical boundary layers in the influence matrix technique, we:
consider a one-dimensional model problem. The spatial discretization does not affect
size of the numerical boundary layers but, as mentioned earlier, it affects the way in wt
poorly resolved numerical boundary layers are handled. For example, high-order sche
will allow Gibbs oscillations, while low-order methods will exhibit a local smeared shocl
type profile. This is the reason why high-order schemes are more susceptible to instak
than low-order schemes that seem to be more robust.

Consider the linear one-dimensional advection—diffusion equation on a semi-infir
domain,

dw ow 9%w
— =Us—+4+v—, O<Xx <0
ot X ax2 (15)

w0,t) =1, lim,pwx,t)=0.

A simple Euler-forward approximation on the advection term, and an Euler-backwze
approximation on the diffusion term give

1 02\, 1 ., Ucdo
-2 L, i 16
(vAt 8X2>w VALY + v X (16)

Note that, in practice, Euler-forward approximation would not be used for the advecti
term because of stability problems, but for this model problem it will suffice. The time
independent influence matrix problem is constructed by solving the equation with a pt
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on the boundary but no forcing function. So, the time-independent Helmholtz equation

1 3\ . .
(m — ﬁ)w =0, ©0)=1. a7
The exact solution to this problemdgX) = e~ /v"AD e are interested in small values of
the viscosityy, because we are interested in high Reynolds number flows. The time step
be small also because we want to accurately simulate unsteady flows and satisfy the
stability limit. Therefore, the thickness of the numerical boundary lagex/vAt), will
be small. The boundary layer based on Eq. (1%){s/U;), and typical physical laminar
boundary layers scale @(./vx/U¢). So, the numerical boundary layers can always b
made smaller than the physical boundary layers by decreasing the timgtstdpually, it
is desirable for the numerical boundary layer to be small. In fact, many times, the sma
the numerical boundary layer the more accurate the solution. For instance, the pres
boundary conditions in the splitting scheme for the velocity—pressure form of the Navi
Stokes equations are chosen to minimize the numerical boundary layer around the v
[25]. Another example, where one wants to minimize the numerical normal boundary lay
is at outflow boundaries, where an artificial boundary condition has been applied. Howe
in our case the numerical boundary layeust be resolveih order to obtain accurate
vorticity boundary conditions. If the numerical boundary layer is smaller than the physi
boundary layer, then the spatial resolution needed is determined by the influence m:
technique, instead of the physical problem. The situation where the numerical techni
increases the stiffness of the problem is highly undesirable.

Now let us use the Kovasznay flow test case, a 2D steady Navier—Stokes flow solution
a perturbation in the initial conditions, to demonstrate that the influence matrix technic
is not convergent in timelhe Kovasznay flow witlQ (¢) perturbation is

ux,y) =1—e*cosry + e sin2<7;x> sinz(z <y + ;)) (18a)
v(X,y) = L e’ sin2ry + esin2<£x) sin2<z (y+ }>) (18b)
’ 2 2 2 2 ’

where 8 =Re/2 — \/R€?/4+ 4n2. We are going to examine the error as a function o
time of the perturbed Kovasznay flow solution. It will be shown that as the time step g
smaller, then the solution will blow up, due to underresolution of the numerical bounde
layers. In an attempt to simplify the problem as much as possible, we will use one elen
to approximate the domain ofe (0, 2) andy € (—0.5, 1.5) with fixed spatial resolution.
Detalils of the time-splitting scheme and of implementation are given in the Appendix.
We start with a set of parameters that lead to convergence when using the pertul
Kovasznay initial conditions, Eq. (18). For the following tests, the Reynolds number
fixed at 40 and the amplitude of perturbatienis fixed at 102. The only parameter varied
is the time stepAt. The left plotin Fig. 1 shows thé; error in the velocity converges, using
a40th-order polynomial and a time step of $0Next, in the right plot in Fig. 1 the time step
is reduced to 10* with all other parameters fixed. In this case, theerror of the velocity
diverges in time. The reason is the length of the numerical boundary layers arising w
computing the vorticity boundary conditions using the influence matrix technique he
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FIG. 1. Time history of the, error in the velocity of the Kovasznay flow, 2D steady Navier—Stokes flow, a
Reynolds number 40 for one spectral element fooe(0, 2) andy € (—0.5, 1.5) with a 40th-order polynomial
and a time step oAt = 1072 for the left plot andAt = 10 for the right plot.

decreased with the time step. As a result, the spatial resolution of 40th-order polynomi
not sufficient to resolve the numerical boundary layers.

Another way to verify that the source of the problem is the construction of the vorti
ity boundary conditions using the influence matrix technique is by enforcing the corr
vorticity at the boundary for the case that diverges. If the influence matrix technique
the source of the problem, then the solution will converge because the solution contair
the numerical boundary layers is circumvented. In general, this test is not possible
cause the vorticity on the boundary is not known, but for the Kovasznay test case we ki
the steady solution. The test reveals that fheerror of the velocity converges when the
vorticity on the boundary is fixed, so our suspicions about the influence matrix technic
are confirmed. A more systematic study of this instability phenomenon for high-order ¢
cretizations is presented in [51], where other such examples are also included.

A solution to this problem is to map out the steep boundary layers in the time-indepenc
problem. Mappings of this kind have been constructed for high-order methods [5]. Thit
only economical if the numerical boundary layers are not present in the time-depenc
equations, so the cost of the mapping can be limited to the preprocessing stage. How
we will not attempt to correct the numerical boundary layer problem in the influence
trix technique. Instead, we will consider an alternative technique to impose the vortic
boundary conditions—the penalty method.

4. PENALTY METHOD

Recently, penalty methods have been used to successfully implement boundary cc
tions in high-order discretizations. For example, multidimensional asymptotically stal
finite difference schemes on complex geometries have been developed by Abarbanel
Ditkoedki [2, 1], using a penalty method to impose Dirichlet boundary conditions. Als
Hesthaven and Gottlieb [22, 20, 21] developed a penalty method to enforce boundary co
tions for shock-free compressible Navier—Stokes simulations. This penalty method enfol
the boundary conditions, as well as accounting for the governing equation at the bounc
In the classical version, the equation is penalized everywhere in the domain. Glotiak
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penalty method developed by Temam [48] and successfully used by Hughes [23] impc
a penalty term in thentiredomain, which leads to excessive stiffness and poor efficienc
The computational advantage of imposing the penalty term obdhadaryhighlights the
importance of the equivalence theorem.

4.1. Multidimensional Formulation

The vorticity transport equation with the penalty boundary conditions is

ow 1
ﬁ +V X (wxUu)= R—evzw —1QMX)D,, — 7cQc(Xc) Fo, (19)

whereD, =w —V xu, F, = [.(V x w) - ds, 7 is the penalty term that imposes the defini-

tion of vorticity, andz. is the penalty term that imposes the multiply-connected constrai
on the body. The function

1, if xisonTl,

. (20)
0, otherwise

QX) = {

ensures that the definition of vorticity is imposed only on the boundary, and the functio

1, if xisonIg,
0, otherwise

Qu) = { @y
ensures that the multiply-connected condition is imposed only on the'body.

The weak form of the vorticity transport equation using the penalty method to impa
the vorticity boundary conditions is

w
(w,at>+(w,w(wxu»

— 1 V. Vo) — . 7Qx)D Qe(xo)F 0 4r. @22
——@( ¥, Vo) — (¥, T1Q(X)Dy,) — (¥, 7c Qc(Xc) w)+/r¢f% )

where(., ) = [, dQ2andy € H 1(Q). The last term in the weak form of the vorticity equa-
tion arises from the integration by parts of the diffusion term. The dominant boundary ter
in (22) are the penalty terms. The boundary term arising from the integration by parts is
dominant. Leaving out the integration by parts boundary term can be justified as the per
terms,r andt., become larger and dominate the boundary. Later it will be shown that spe
tral convergence can be achieved using the penalty method when the subdominant bout
term is neglected. However, neglecting this term can explain why such a large penalty
rameter is needed. Some test cases demonstrating this will be shown later in this sect

Now the vorticity and velocity are coupled on the boundary by the vorticity bounda
conditions and the multiply-connected constraint. This strong coupling is undesirable v
the current numerical formulation because it requires both the vorticity and velocity to
solved simultaneously. In this case, fast linear solvers, based on the semi-discrete equa
cannotbe used. Hence, atime extrapolation of the penalty terms on the boundary of the f

DM = ™1 v x U (23a)

Fhl = / (Vx ") -ds (23b)
C

1 We consider the case where the boundary of the domain is stationary.
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FIG.2. Mesh and streamlines for 2D Kovasznay flow test case at Reynolds number 40. Note the mesh clt
elements in the wake.

is used, so the fast linear solvers can be applied. We accept this time error caused by
ging the vorticity boundary conditions with the understanding that the numerical meth
already requires a small time step due to the CFL limit caused by treating the nonlin
terms explicitly. Note that the penalty boundary terms, Eq. (23), are imposed using a fi
order extrapolation in time. High-order extrapolation schemes in time could be used,
first-order has given satisfactory results.

We will test the penalty method on a steady 2D Navier—Stokes solution. We will addr
two questions when solving the test case. First, can spectral accuracy be achieved wit|
penalty method? Second, how does the penalty parameter scale with the mesh param
such as polynomial order?

We consider again the Kovasznay flow test case given in Eq. (18) with the perturbatic
set to zero for the purpose of demonstrating that high-order accuracy can be achieved
the penalty method. Figure 2 shows a plot of the mesh and the streamlines at Reyn
number 40. Figure 3 shows that the error in the vorticity and velocity scales inversely w
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FIG. 3. Plot (left) showing the error as a function of penalty parameter with a 10th order polynomial anc
plot (right) demonstrating the exponential convergence of the 2D Kovasznay test case at Reynolds number -
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the penalty parameter, Exponential convergence is achieved in the vorticity and velocit
using the maximum norm.

5. CORNERS, DISCONTINUITIES, AND VORTICITY

Nonsmooth computational domains can give rise to singular solutions, which are es
cially problematic in the vorticity—velocity formulation. The solution of an elliptic problen
in a domain with a corner of anglef£) solved in local polar coordinates has the form

ur, 0) xrfr@)x(r,0), (24)

wherez (9) is a smooth function ang(r, 6) is a smooth cutoff function. For these types of
problems, the convergence rate estimates for the spectral element solution is

lu—un| < CN727¢, (25)

whereuy is the numerical solution andis a small positive constant. For most problems
B =m/a, so the convergence rate lies betwéafN 1) andO(N~?). These results can be
applied to the velocity Poisson equations, Eq. (2b), or Eqg. (3b), and the regularity of
vorticity can be estimated from the regularity of the first derivative of the velocity. Se
eral techniques have been used to overcome this difficulty such as auxiliary mapping
supplementary basis functions [36]. One supplementary basis function formulation u
to recover high-order convergence which is particularly attractive is an eigenpair repres
tation called the Steklov formulation [57, 47]. Here, we want to study the effect of she
corners on the vorticity by rounding the corner and vary its curvature systematically. In t
case, the main question is how large must the curvature be for the rounded corner to &
rately approximate the sharp corner geometry. We recognize that the answer to this que
is problem-dependent. Therefore, we will limit our corner study to the 2D backward-faci
step and the 3D conduit expansion problem, which are representative of the geometries
are of immediate interest in our work. Furthermore, it is noted that the singularity iss
is exaggerated in the vorticity—velocity equations, compared with the velocity—press
equations, because the vorticity is less regular. In velocity—pressure formulations i
the pressure which is infinite at corners with angles greater thand thus, in princi-
ple, the same sort of difficulty should be encountered with this formulation. However,
elliptic equation for the pressure is supplemented with Neumann boundary conditions,
by defining anormalvector at a corner, one effectively rounds the corner and, thus, a fin
value of the pressure at the corner results.

5.1. Flow over Expansions

First, the nature of the corner problem will be explored by considering the 2D backwa
facing step as a test case [24]. The inlet channel heighH4.06 and the outlet channel
height isH = 2.0 to match the expansion ratio in the experiments by Arreail.[3]. The
step corner will be rounded and the limit of large curvature will be taken to demonstr:
that the features of the solution asymptote to the sharp corner solution. Figure 4 sh
the vorticity contours for the backward facing step with an increasingly sharper corr
The vorticity contours look very similar, especially plots (2) and (3) in Fig. 4, with th
sharper corners. The meshes used to obtain the results are also shown in Fig. 4. The
problem with a sharp corner is solved usiNgE~T ar [55]—an unsteady incompressible
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1b)

10x

FIG.5. \Vorticity contours generated usitfexZ ar—velocity-pressure flow solver for the sharp corner 2D
backward facing step problem. In part (2a) of the figure the vorticity contours are shown and in part (2b) a 10-
magnification of the vorticity contours around the corner is shown with the mesh shown in part (1). The Reync
number is 100, based @(Umax(Zh)/v), and an 8th-order polynomial is used within each element.

velocity—pressure Navier—Stokes solver. The vorticity contours and corresponding m
from the velocity—pressure solver are plotted in Fig. 5. Notice the similarity between 1
rounded corner result frodVV.A—the vorticity—velocity solver, and the sharp corner
result from the velocity—pressure solver. Figure 6 shows the separation length as a func
of corner curvature predicted by the vorticity—velocity solver and is plotted along wi
the experimental value and predicted value from the velocity—pressure solver. Both
experiment and the velocity—pressure solver predict a nondimensional separation leng
approximately 2.7. Note that the separation length is defined as the distance betweel
separation point and the reattachment point. For a sharp corner, the separation point is
atthe corner. However, the location of the separation point for the rounded corner is not fi

Figure 6 shows two important results: First, both the experiment by Aretally[3] and
the numerical simulation using the velocity—pressure solver agree. Second, the separ
length predicted by the vorticity—velocity flow solver approaches the above-mentior
experimental and numerical sharp corner result as the corner curvature is increased.
interesting to see how the corner curvature affects the vorticity along the wall. A compari
of the vorticity along the lower wall of the backward-facing step with the different curvatur:
is shown in Fig. 7. Notice that the vorticity around the corners with curvature 10 and 1
are almost identical, except at the point at the corner where the vorticity approaches a |
negative value. It can be seenin Fig. 7 that the maximum in the vorticity on the wall increa
with curvature.

The next corner test case is internal flow in a 3D conduit expansion. The sma
pipe has a diameter of one and the larger pipe has a diameter of two. The domai
divided into 1028 hexahedra elements. Figure 8 shows the computational domain
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FIG. 6. The solid dots in the figure are the separation length (normalized with the step height) as a func
of the corner curvature calculated using the vorticity—velocity flow solver for Reynolds number 100, based
§(Umax(2h)/v). The separation length is defined as the distance between the reattachment point and the sepa
point. The straight line corresponds to the separation length found experimentally by Asnadly3] and the
numerical simulation from the velocity—pressure solver for the sharp corner case.

Fig. 9 shows both the nondimensional reattachment length (also called here the bu
length, L/D,), and distance of the center of the eddy (or the bubble centefD,, as

a function of the Reynolds number, based on the small diameter and mean inlet velo
Re=W,D,/v. Figure 9 shows the experimental results by Macagno and Hung [31], <
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FIG.7. Aplotand zoom (right) of the vorticity along the lower wall as a function of the distance along the we
for Reynolds number 100. The three cases with finite curvature of 1, 10, and 100 are from the vorticity—velocity f
solver. The step flow case with an infinitely sharp corner is from the velocity—pressure solver. The rounded co
of the 2D backward facing step has a steep but continuous vorticity distribution. The minimum in vorticity on t
lower wall corresponds to the start of the corner and the maximum corresponds to the end of the corner. Hen
the sharp corner case, run using the velocity—pressure solver, there is a discontinuity in the vorticity at the co
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FIG. 8. A plotof the computational domain of the three-dimensional conduit with rounded corners. There .
1028 elements at the fourth-order polynomial in the mesh. Notice the curvature at the rounded corner is tor
nature, where there are two radii of curvature defining the geometry—pipe and turning curvature with the turi
curvature five.

I ® VA
6 L] Nekter
O PRISM g
a  Macagno & Hung - Photo. exp.
I o Macagno & Hung - Dye exp. OF' oo
L aft ¥
o A
A
Q ar €a
) X
= a
S
A &
= & A%
1 o
2 1
a
2 a
a 2
a4 n
o
A
L7 *
IS & 8
q #
?A ) . . 1 . L ) ) ! ) . )
0
0 50 100

Reynolds Number

FIG. 9. A plot of the bubble length and bubble center for the three-dimensional conduit as a function of
Reynolds number is shown. The plot compares the experimental results by Macagno and Hung, 3D nume
simulation using the vorticity—velocity solv@VV.A, 3D numerical simulation using the tetrahedral velocity—
pressure solveNexT ar [43], and a 2D axi-symmetric numerical simulatiBRISM [33].
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numerical simulation using the vorticity—velocity algorithr@W¥V.A4), 3D numerical
simulation by Sherwin and Karniadakis [42] using tetrahedral velocity—pressure sol
(NerT ar), and 2D axi-symmetric numerical simulation by Newman [33R(SM).

The curvature at the junction of the conduit expansion is torus, where the turning c
vature is five. It is the length and center of the bubble around the torus-shaped cor
calculated using the vorticity—velocity solver that is going to be compared with other ¢
periments and computations in Fig. 9. The experiment and the velocity—pressure ¢
putations are going to be for the sharp corner conduit expansion. For the finite cur
ture geometry, shown in Fig. 8, we expect that the bubble length calculated using
vorticity—velocity solver will underpredict the experimentally measured length, based
the experience from the 2D backward-facing step results shown previously. The amc
of underprediction will directly depend on the turning curvature at the junction. For tl
3D conduit problem, we are not going to increase the turning curvature. For this test c:
the curvature is fixed and the inlet Reynolds number is varied to test the Reynolds nt
ber dependence of the recirculation bubble length and center. For the sharp corner
the bubble length and distance of the center are a linear function of the Reynolds nun
for the range considered. So, we expect that the bubble length and center will be a lir
function of Reynolds number for the rounded corner expanding conduit. Figure 9 ct
firms the linear dependence of the bubble length and center as a function of the Reyn
number, calculated using the vorticity—velocity solver. It is interesting to note that the bt
ble length seems to be more sensitive to the rounded corner than the bubble center.
difference between the prediction of the bubble center from the rounded corner and
sharp corner is indistinguishable on the graph, while the rounded corner expanding cor
underpredicts the bubble length determined by the sharp corner case. Again, this ur
prediction is expected, based on the results from the 2D backward—facing step tests
previously.

6. EXTERNAL FLOWS

6.1. Two-Dimensional Flow Past a Cylinder

An interesting point about boundary conditions for cylinder flows or for general exterr
flows, is that the velocity is known on the cylinder, while the vorticity is not. In contrast, or
can argue that the vorticity is known on the far field boundary condition, while the veloci
is not. So, the vorticity on the cylinder and outflow is calculated using the definition
vorticity. The far field regions are assumed to be irrotational, so the vorticity is set to ze
On the cylinder, the velocity is set to zero to impose the no-slip condition. The flux of t
velocity is set to zero at the outflow, and the velocity is set to the free stream conditior
the far field boundary. The outer region, where the flow is irrotational, is relatively coar:
Notice that the “far” field boundaries are relatively close to the cylinder at 5 diameters, ¢
the outflow is 15 diameters from the cylinder.

We have performed a detailed comparison of the instantaneous and average vorticity
velocity from the incompressible Navier—Stokes flow co@agV.A and NexT ar for
cylinder flow at Reynolds number 100 YV A is the spectral element vorticity—velocity
developed in this workN ex T ar is a hybrid spectral/h-p element velocity—pressure solve
that uses both triangles and quadrilaterals [43, 55]). For the comparison to follow, the me
number of elements, and polynomial order is the same for both solvers. This deta
two-dimensional comparison has the dual purpose of benchmarking the vorticity—velo
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FIG. 10. A comparison of instantaneous vorticity contours for two-dimensional cylinder flow at Reynolc
number 1000. The contour plot on the top is from the vorticity—velocity sai#\.A, while the contour plot
on the bottom is from the velocity—pressure sobkéex 7 ar. Both results were obtained using 94 elements with
14th-order polynomial. Identical contours levels are used for both plots. Also, the simulations were started f
the same initial conditions and integrated to the same time.

code for an unsteady flow and highlighting the strengths of the method. The intenti
ally selected small external flow domain favors the vorticity—velocity code because of
method’s ability to impose irrotational boundary conditions and robustly handle outflc
boundary conditions. The outflow will be a problem &fexZ ar and will have to be
treated with a viscous sponge outflow boundary condition that acts to dampen the w:
created by the outflow boundary condition.

Figure 10 compares the instantaneous vorticity calculated by the two codes. The vorti
is similar near the cylinder. However, the differences at the side walls are due to the blocl
effects of the velocity—pressure boundary conditions used in the velocity—pressure c
Also, the viscous outflow sponge used to stabilize the velocity—pressure code is affecting
vorticity at the outflow. A comparison of the average streamwise velocity profileat= 1
of the average field in Fig. 11 shows thieckage effedrom the boundary conditions in the
velocity—pressure code. Notice that the blockage effect from the boundary conditions is
limited to the exterior flow, but effects the wake profile dramatically. Hence, the differen
between the two simulations is significant in the wake. A comparison of the time trace ¢
power spectrum from the shear layer on the cylinder and the near wake show very ¢
agreement between the simulations. The dominant nondimensional frequency (Stro
number) is 0.242 for the vorticity—velocity code and 0.25 for the velocity—pressure co
The slightly higher frequency of 0.25 predicted by the velocity—pressure code is beca
the blockage effects due to the close external boundaries is more pronounced.
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FIG. 11. A comparison of thes-profile atx/D = 1 of the average field fro@VV.A andNexT ar. The
effects of blockage for the velocity—pressure formulation are obvious.

6.2. Three-Dimensional Flow Past a Cylinder with End-Plates

In this simulation we consider flow past a finite length cylinder mounted on end-plat
This configuration is used in experimental arrangements in order to minimize oblic
shedding [10]. However, experiments with relatively small aspect ratio (AR) [34], i.
cylinder length over diameter, have shown that the formation length is a strong funct
of this aspect ratio. The formation length here is defined as the maximum length of
recirculating zone in the near-wake.

Here we consider such a model problem with the end-plates located in a region fr
—10<x <4.5and—10<y < 10 at bothz= 0 and 10 while the exit of the domain goes to
x =25. All lengths are normalized by the diameter and the origin is located at the cer
of the cylinder. In Fig. 12 a sketch of the computational model problem is shown. Nc

10

10 4.5 21

e
e

FIG. 12. Sketch of the 3D cylinder flow domain bounded by end-plates (shaded).
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the origin of the coordinate system is denoted with O. The Reynolds number based or
cylinder diameter and maximum inlet velocity is 500. At this Reynolds number we expe
the cylinder wake to be turbulent for large aspect ratios. Here the ratio of distance betw
the walls to cylinder diameter is 10, which is on the lower side of what is typically use
in an experiment. Th¥ direction is periodic throughout the entire domain. Downstrear
past the endplates, tiedirection is also periodic. The usual outflow boundary condition
shown to work in 2D cylinder flow are applied here.
The inlet velocity is

u@ =1-e2_e#10 og<z<10 (26a)

u) = u(10 =0. (26b)

We specify such an inlet velocity in order to avoid the singularity in vorticity that occurs |
the boundary layers at the leading edge of the walls. The exponential form of the bounc
layers is supposed to mimic the shape of a boundary layer. The boundary layer ha
diameters to “adjust” before it encounters the cylinder. The boundary layers are viewed
perturbation to the cylinder wake. A horseshoe-type vortex is expected at the junction wt
the cylinder and walls meet. In addition, a shear layer is expected at the trailing edge of
end-plates. These features break the symmetries seen in the infinite cylinder flow case

The experience gained with 2D cylinder flow guides us in constructing the mesh in |
plane perpendicular to the cylinder. In this cross section, there are 350 elements wi
most of the elements are concentrated around the body and in the wake. Element:
heavily concentrated in the boundary layers on the surface of the cylinder. There is at |
one element in the boundary layer. The mesh is structured iZ thieection. There is a
clustering of elements near the end-plates in order to resolve the boundary layers shov
the exploded view in Fig. 13.

z

o

FIG. 13. Domain divided into 32 subdomains using the MS package (see Appendix). The domain decom-
position package tries to minimize the number of cuts while maintaining the same number of elements in ¢
subdomain. By minimizing the number of cuts, the communication time is minimized. By maintaining the sa
number of elements in each subdomain, load balance across the processors is maintained.
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FIG. 14. Plot of the vorticity contours of half the cylinder domain at Reynolds number 500. The incomir
boundary layer and developing wake are visible. Also, a horseshoe vortex structure is present at the jun
between the cylinder and endplate.

A perspective view of the instantaneous vorticity field from the simulation is shown
Fig. 14. The incoming boundary layer and developing wake is shown. A horseshoe vol
at the junction between the cylinder and end-plates is also visible. However, the flov
still developing. The initial model problem consisted of a cylinder bounded by walls. Th
model was integrated for 20 convective units before switching to the current model, wh
the cylinder is bounded by end-plates. The end-plates simulation has been integrated fo
convective units. A two-dimensional corss section of the boundary layer shown in Fig.
at the planey = 0. The chaotic wake and the large recirculation pattern formed in front
the cylinder can be seen on this plane.

The contours of zero streamwise (instantaneous) velocity are shown in Fig. 16. -
contour behind the cylinder is an estimate of the steady formation length. The format
length peaks at the middle of the cylinder. The formation length is decreasing as the \
is approached. The zero streamwise contrours in the front of the cylinder identify 1
recirculation zone as occurs at the junction between the cylinder and the end-plates. The
in the streamwise velocity after the cylinder and near the periodic sides is a conseque
of the end-plates. From Fig. 16, the maximum nondimensional formation length beh
the cylinder can be estimated as approximately 4.3. This is significantly larger than
lengths predicted by experimental and computation results for large to infinity aspect r:
cylinders shown in Table I. The formation length measured in the experiments of P
and Gharib [35] shows the trend of increasing formation length with decreasing asf
ratio. The experiment by Gerrard [14] shows some large variation but it does not st
the aspect ratio of the experimental setup. The simulation BWMY.A predicts a large
instantaneous formation length at the midspan for an aspect ratio of 10, while the ler
decreases by 25% by tfiespan. The simulation using a Fourier version (in the span) c
NexT ar has no influence from end-plates and predicts the smallest formation len
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FIG. 15. Two-dimensional slice of the velocity vectors at the centerljne,0, for Reynolds number 500.

where the zero of the streamwise velocity is the indicator. One expects overpredictiol
the formation length compared to the infinite cylinder case when the aspect ratio betw
the walls is only 10. The conclusion from the simulation BYV A is that the end-
plates tend to increase significantly the formation length behind the cylinder, in agreen
with experimental evidence. Note that while the time acuracZ WV.A is only first-
order due to the penalty term, the above results are independent of time discretiza
errors as verified by performing several simulations corresponding to very small time st

7. SUMMARY

A vorticity—velocity algorithm has been presented to solve the incompressible Navi
Stokes equations for complex three-dimensional geometries. The equivalence betv
the rotational and Laplacian forms of the vorticity—velocity equations and the canoni
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FIG. 16. Instantaneous contours of zero streamwise velogigy,0, for Reynolds number 500.
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TABLE |
Formation Length for Flow Past a Cylinder at Reynolds Number 500

Velocityu=0 Peak ofu'u’

Cases Experiment Computation Experiment Computation
ZVV.A midspan AR=10 4.3
IVV.A i-span AR=10 3.3
Park & Gharib AR=15 (1996) 2.5
Park & Gharib AR=46 (1997) 1.59 1.57
Park & Gharib AR=144 (1997) 1.59 1.45
Gerrard (1978) r0/2.8 1.70
NexT ar AR=o0o 1.52 1.61

Note The formation length measured in experiments by: (1) Park and Gharib with aspect ratios (AR) of 15,
and 144, and (2) Gerrard with unknown aspect ratio reported several different lengths; and in simulations
(1) ZVV.A with aspect ratio of 10, and (2) the Fourier versiondEx 7 ar based on the velocity—pressure
formulation with infinite aspect ratio.

velocity—pressure equations is stated with emphasis on the boundary constraints and il
conditions. A penalty method used to impose the vorticity boundary conditions is dev
oped and validated on an unsteady 2D flow past a cylinder and a steady 3D flow in a |
expansion. An analysis of the often-used influence matrix techinque shows that the me
does not converge ast goes to zero for high-order spatial discretizations. The lack of cor
vergence of the influence matrix technique as the time step decreases is demonstrat
perturbing an exact 2D Navier—Stokes solution. Unsteady flow past a 3D cylinder with e
plates at Reynolds number 500 is simulated for first time. The effect of the end-plates on
formation length is compared with experiments. Parallel timings of the 3D cylinder with en
plates on a Silicon Graphics Origin2000 parallel system shows fairly good parallel scali

The numerical formulation of the vorticity—velocity equations can be solved by expandi
the vorticity and velocity on nonstaggered grids or on staggered grids. Researchers
have suggested that the numerical formulation should reflect the fact that the vorticit)
equal to the derivatives of the velocity have constructed their finite difference [8, 9, 29, .
17, 46, 18, 32, 56, 11, 13] and finite element schemes [16, 15, 19, 39, 40] on stagg
grids. However, theecessityf expanding vorticity/velocity on different grids still remains
an unresolved theoretical question. In the splitting formulation presented in this paper, t
the vorticity and velocity are expanded and solved on the same grid. No instabilities of ¢
sort were observed even for very long time integration, and several simulations inclu
in [51] confirm this result. Implementations at different interpolation orders did not affe
stability, only accuracy. Solving for the vorticity and velocity on nonstaggered grids h
several distinct advantages over staggered grids, including ease of implementation, ea
extension to high-order, and ease of extension to unstructured grids.

APPENDIX: IMPLEMENTATION

The vorticity—velocity equations are discretized in time using a stiffly stable time i
tegration scheme developed by Karniadadisal. [25, 49]. The spatial discritization is
performed using the spectral element formulation [38]. The fast iterative/direct Schur cc
plement method used here was developed independently by Sherwin and Karniadakis
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and Couzy and Deuville [7], where the Schur complement is solved iteratively and 1
interior matrices are solved directly. There are several reasons to work with the Sc
complement, also known as the nonoverlapping subdomain method of the spectral elel
equations: (1) the Schur complementinherits the symmetric positive definiteness of the c
inal system—it guarantees good convergence properties for the iterative solver, (2) de
matrix—vectorization accelerates matrix—vector products, (3) rank is the number of po
on the boundary of subdomains—cost per iteration is cheaper, (4) the condition numbe
the Schur complement matrix is bounded by the original matrix [44], the finite element p
dicts O(h~1), where the original system 8(h~?) [4]—translates into fewer iterations to
solve systems and (5) the interior solves are decoupled and can be solved independent
benefit on parallel architectures because this reduces communication costs. A projec
technique [12] called the successive right-hand side (RHS) accelerator developed by Fis
accelerates the iterative Schur complement solver.

All partitions are generated by a mesh partition package calleti $4 [26], which uses
a multilevel graph partition algorithm that coarsens and then projects backward tow
the original finer graph. The communication interface for the “direct stiffness summatic
needed in the spectral element formulation is performed by a “Gather-Scatter” libr:
developed by Tufo and Fischer [53] based onmiessage passing interfa¢@Pl). The
output from the parallel algorithm is performed so that each processor writes its o
self-contained data set. The data can be concatenated, together with a “cat” systern
and viewed as a whole, or a subgroup of partitions can be viewed for the economy
postprocessing.

The parallel performance of the unsteady vorticity—velocity Navier—Stokes algorithm
validated by timing a production case problem described in Section 6.2, the 3D cylin
with end-plates at Reynolds number 500. The timings are performed on the Silicon Grap
Origin2000 parallel system at the National Center for Supercomputing Applications. T
following results represent a typical timing performance without and with the success
RHS acceleration technique. The saving in wall clock time can be as dramatic as &
when using the acceleration technique for unsteady flows. The success of the acceler
technique can be attributed to the fact that the dynamics from the previous time steps
be a fairly good approximation to the flow at the current time step. The successive R
technique has a speed versus memory trade-off. The memory requirements increase as
right-hand sides are stored. Eventually, as more RHS are included, there are diminis
returns in the speedup. The optimal number of RHS is dependent on the unsteady hi:
of the problem and therefore is problem dependent.

The average time/time step is computed by using the last 20 steps of a 23-step run
computing the mean using= (1/n) Zi”:l X . The error bars on the average time/time stej
are computed using the standard deviatios; \/(1/(n -1) Zi”:l(xi — X)2. The nearest
neighbor communication required when performing “direct stiffness assembly” is achie\
by the “gs” package involving both pairwise and tree communication. The cutoff for pa
wise communication is set to 5, so any nodes shared by five or more processors s
receive data using a tree algorithm; otherwise a pairwise communication is used to sent
ceive data.

The average time/time step scales roughly AB $hown in Fig. 17. The successive
RHS technique consistently gives a 50% reduction in computational time. The probl

2METIS is copyrighted by the regents of the University of Minnesota.
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FIG. 17. Average time/time step in seconds, including the standard deviation for a 3D cylinder with er
plates Navier-Stokes calculation with 2366 elements at sixth-order polynomial running on Silicon Grapt
Origin2000. The standard solver is the iterative/direct Schur complement solver, while the 5 RHS accelerat
the iterative/direct Schur complement solver with five successive right sides used to accelerate the calculatic

scales nearly linear with processors for small number of processors; see Fig. 17. Note
self-speedup uses the four-processor run as the reference point, because the test case
not fit on one processor due to memory constraints.
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